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Preface

Due to a temporary health condition, the paper entitled “Weak and strong couplings
between a master oscillator and a set of satellite oscillators” was not delivered at the ASA
140th Meeting held at Newport Beach, CA, during the period 3-8 December 2000.
However, the material to be presented is deemed, by the authors, worthwhile. Here it is
offered in the form of a report, so that those who are interested will not remain deprived,

and those who are not interested may remain blissfully ignorant, and just ignore this report.

The report is largely written in the manner in which the original presentation would have
been given. Nonetheless, the title is changed to reflect more closely the current intent of the
authors; after all the title and abstract were done months ago. Of course, some liberty is
taken with regards to time. Some of the points and some of the exhibits that would have
had to be cut are herein included. Nonetheless, the liberty of time is exercised with caution.
Also, the reader will find that the viewgraphs are not in mint condition; the viewgraphs are
preserved in their original forms. However, almost all letters are in typed form. (One of the
authors was once warned, by a University Professor, no less, that hand-written letters are
not acceptable to him. If he sees them in viewgraphs, he ignores the viewgraphs, period,
says he. We would hate to be ignored, a priori, by University Professors, whether they are
of the “he” or the “she” types [1].)

The material herein is based on, and is an extension to, a recent paper by one of the authors
[2]. In addition to reassessing the stiffness control coupling form, the extension consists
largely of the inclusion of mass and gyroscopic control coupling forms. Moreover, the

extension allows for various coupling strengths; from weak to strong coupling strengths.

We have advanced with the inclusion of viewgraphs that carry graphical curves in colors.
We trust that colors are of help. We hope in the future to become more and more colorful.
Finally, we appreciate your kind indulgence and interest in reading this report.
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Viewgraph 1

The complex consisting of a master oscillator that is coupled to a set of satellite oscillators
is sketched in this viewgraph. The couplings are typically defined by a stiffness control
term (K¢y), a mass control term (M¢y) and a gyroscopic coefficient (Gy) [2]. The losses in
the complex are cast as stiffness control terms. (See viewgraph.) The stiffness control
terms are, in turn, defined by the resonance frequencies ((0 ), (Or) and (W ¢y), as indicated
on the viewgraph. Note that both () and (0 ¢y) are defined with respect to the mass

(my) of the (I)th satellite oscillator.
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The mass and the stiffness control terms in this

complex are related in the forms

I

Ko(1+411),)
Eor(1+14n,)
'kocr(l + ?:7767")

- .

(kor/mr) = Wy?

(Ko/M) = wo*

(kocr/mr-) = Wer?

where the pairs {M, K}, {1, kr}, and {my, kcr} are in reference to

the master oscillator,

to the (7')th satellite oscillator and to the

coupling between them. The parameters (7),), (7,), and (7)) are.

the corresponding stiffness control loss factors, respectively.




Viewgraph 2

In expressing the linear impedance Zo(®) of a master oscillator that is coupled to a set of
(R) satellite oscillators, it is convenient to cast the influence of this coupling by defining an
induced reactive factor S(y) and an induced loss factor Ns(y) [2, 3]. Here the focus is set
largely on the induced loss factor Tg(y). The expression for this loss factor is conveniently
cast in terms of normalized parameters that specify the master oscillator, the set of satellite
oscillators and the couplings between the master oscillator and each member of the set. The
expression is dominated by a sum over the satellite oscillators in the set. The normalized
coupling parameters are (Zcr)z, (Mgy) and (g;), which are in reference to the stiffness, the

mass and the gyroscopic forms, respectively.

It is gratifying to find that the dependence on the gyroscopic parameter @r) is quadratic so
that the induced loss factor Ts(y) is not dependent on the sign of (gr)- Itis noted, in
passing, that the induced reactive factor S(y) is independent of (gr) altogether. [One is
reminded that the gyroscopic coupling is acting in quadrature to either the mass or stiffness

coupling.]



The linear impedance Z, (W) of a master oscillator that is coupled to a

set of (R) satellite oscillators may be expressed in the form

Zo(W) = Zo(y) = (w) [1 - )2 {11 - S@)+i[no + ns(v)]}

The induced loss factor Ms(y) is then

NsY) = —(y)21m{ i_’rﬁr [(1 + Mer) — (2rr)* (1 + 777"7")]—1
[{(1 - (E 7:77r)} {mcr — (Zer)* (1 + incr)} - @cr/y)z] )

where the normalization of some of the variables and parameters that

define the complex are:
y-_—: ((.L)/wO) . Ty = (wr/WO) ; Ler = (wcr-/wo)

Mer = (Mer/Tr) ’ g, = [Gr/(WoTNr)]

Zrr = (Trr/Y) ; Zr=(Tr/Y) ; Ze= (Zer/Y)

(qcr/y)z = 4m_€7‘(267‘)2(1 + incr) + (gr/y)2




Viewgraph 3

Again, a sketch of the complex is depicted. The normalization of the frequencies by the
resonance frequency of the master oscillator (10 ) is also repeated.

A new concept is introduced: The normalized resonance frequencies (Xr) and (Xcr) are
rendered similar by defining the stiffness parameters (Olr) and (Ol¢r) ; (Oly) pertaining to
the “spring” in the (T')th satellite oscillator and (Qlr) pertaining to the “spring” in the
coupling of this satellite oscillator to the master oscillator. The combined normalized

frequency (Xyr) is given by:
2 2 2 0.2
(Xrr) =04 (X?) + Oler (X?) = (0l + Oler) (Xp ) -

The corresponding mass coupling parameter (Mc;) and gyroscopic coupling parameter (&r)
are also defined [3]. A condition between the stiffness parameters (Olr) and (Qlcr) and the
mass coupling parameter (IM¢y) emerges. This condition fixes (Xrr); (Xyr) is related to the
total normalized stiffness in the (I)th satellite oscillator; normalized with respect to the

mass (IMy) of that satellite oscillator. The fixed (Xyr) is related to the total normalized
stiffness to which the mass (1My) of the (I)th satellite oscillator is subjected when the master
oscillator is blocked. The fixed (Xrr), as a function of (T), is displayed in the viewgraph.
The normalized discrete or continuous index (T) is designated T =[1 (R + 1)_1]. The
index (I) is that assigned to identify the (I)th satellite oscillator and it is further imposed
that (Xp+1, r+1 > Xr,r) and the number of satellite oscillators on either side of the resonance
frequency (o) is equal. The choice of the expression for (X? ) is selected here to conform
to one of the forms recently considered in a paper by one of the authors [2]. The choice for

(X;) ) is not otherwise restricted. A large variety of forms are admissible.
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Viewgraph 4

In the literature the common satellite oscillators are depicted as sprung-masses [4-14]. A
sprung-mass defines a satellite oscillator that is mass controlled; i.e., Oy =0, and is very
strongly coupled to the master oscillator; i.e., Olcy = 1. What is new in the present effort?
In addition to sprung-masses, other types of satellite oscillators and other types of couplings
are admitted; e.g., mass and gyroscopic control couplings [3]. Moreover, in all forms of
couplings, the coupling strengths may be varied from weak to strong. A variety of coupling

forms and their strengths are defined and exemplified in the viewgraph.
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Viewgraph S
The definition of the modal overlap parameter (by) is given in this viewgraph [2, 3].

Under certain assumptions, e.g., by = by, O = 0L and Olcr = Ol the loss factor (Nyr) may
be simply stated. The explicit expression for the loss factor () of the (T)th satellite
oscillator, that is appropriate to the form of (X? ) which is defined in Viewgraph 3, is

presented. The loss factor (Vyy) is directly proportioned to the modal overlap parameter

(br).
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Viewgraph 6

The loss factor (Tyr) associated with the (I)th satellite oscillator is presented as a function
of the normalized index ( T ). This normalized index is designated (T ). The loss factor
(M), as a function of (T ), is depicted in this viewgraph for two values of the modal
overlap parameter (by) as just defined in Viewgraph 5. These values are (0.1) and (2); they
are in the ratio of (20). One recalls that under the specification of the complex here
considered, T) = Mgy = Nr = Tcr and these loss factors are independent of the forms of the

couplings.
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Viewgraph 7

Subsequently, without essential loss in generality, it is assumed that Oly = O, Olcr = Ol,
Mgy =M, gr =g and by =Db. In this viewgraph the induced loss factor Ns(y) is depicted
for satellite oscillators that are largely in the form of sprung-masses. Depicted is a situation
in which the modal overlap parameter (b) is small compared with unity; b=0.1. The
undulations in the induced loss factor Ns(y), as a function of (y), is clearly discernible [2].
The mass ratio (Mg / M) is chosen to be 0.1. [This value of (Mg / M) is maintained
throughout, where (M) is the total mass of the satellite oscillators and (M) is the mass of
the master oscillator. Also (R) is maintained at the value of (27) throughout, where (R) is
the number of satellite oscillators in the complex. Changes in the value of (Mg / M) and

(R) are readily introduced when called for.]

14



For a modal overlap parameter (b,) that is less than unity; by <1, adjacent

satellite oscillators reside outside each other’s bandwidths. Consequently

the influence of the satellite oscillators on the response of the master
oscillator, as a function of (y); y=(®/ @), can be identified

individually; each contribution associated with a satellite oscillator stand

out prominently from the others.

An example of such an influence in

terms of evaluating the induced loss
factor 7] ¢( y); as a function of (y) with (b,) less than unity, is depicted

gt

in Fig.
10
1
Ns(y). =
0.1
0.01 4
b = 0.1— 7
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1.10° 0; 5 -
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Viewgraph 8

The situation depicted in Viewgraph 7 is repeated here, except that the model overlap factor

(b) is increased above unity; b =2. Clearly the induced loss factor Ms(y), as a function of
(y), is undulations free; the curve is a smooth one. In this viewgraph, as in Viewgraph 7,
the mass ratio (Mg / M) is chosen to be (0.1) and the number (R) of satellite oscillators is

chosen to be (27).
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- On the other hand, for a modal overlap parameter (by) that exceeds

the. value of unity; by > 1, adjacent satellite oscillators reside within

each other’s bandwidths. Therefore, their influence on the response

of the' master oScillator' is largely continuous as a function of (y);
y=(@/®p). The more the modal overlap parameter (b;-)
exceeds the value of unify, the more the continuity - An examiple
of such an influence, in terms of evaluating the induced loss factor

Ns(Y), asa function of (¥) with (by) exceeding unity, is depicted in

Fig.
Qe = 1 10 m:—uu—-m»;rﬁ—w = =
= = o
773 (y) [ ; : "

0.1 e =
hog Ve
1.10 3 I __ _
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Viewgraph 9a
Stiffness Control Coupling

1. When the curves in Viewgraphs 7 and 8 are directly compared, it is observed that the
undulations in the former are mean-valued in the latter [2, 15]. That is, if the undulations in
Viewgraph 7 are mean-valued, the resulting smoothed-curve largely duplicates the curve in
Viewgraph 8. In that sense, when mean-values are presented, the induced loss factor Ms(y)
is largely independent of the modal overlap factor (b). (When (b) is large compared with
unity, erosion may occur in values of Ng(y), especially for small values of (R); the erosion
sets in and increases as the values of [b (R+1)_1] approach and exceed unity [9, 10].

Some erosion in the value of the induced loss factor Mg(y) may be observed at the edges of
the normalized frequency range that extends from about [1 + (‘Y/Z)]_l/2 to[l - ('Y/2)]-1/2.
[cf. Viewgraph 3 and 9d.4.].) In Viewgraphs 7 and 8 the curves pertain to stiffness control

couplings that are strong; namely Olc = 1.0 [0l =0.0.]

2. The overlay of curves is repeated in this viewgraph, except that the coupling, although
remaining stiffness control, is lowered in strength to a degree of moderate coupling; namely
Olc = 0.2 [ot =0.8.] The general features in Viewgraph 9a.2 are similar to those in
Viewgraph 9a.1, except that the levels of Ms(y) in the former are diminished from those in
the latter viewgraph. This decrease is related directly to the difference in the coupling

strengths.
18
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Viewgraph 9b
Gyroscopic Control Coupling
The format is that of Viewgraph 9a, except that the coupling is gyroscopic in form, rather

than of stiffness form. Note the slight slope in the curve over the relevant normalized

frequency range. That slope is consistent with the functional dependence of that form of

coupling on (g y), rather than simply on ( g ).

20
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Viewgraph 9¢

Mass Control Coupling

The format is that of Viewgraph 9a, except that the coupling is of mass control in form,

rather than of stiffness control form. [cf. Viewgraphs 9d.3 and 12c.]
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Viewgraph 9d

Stiffness and Gyroscopic Coupling

The format is that of Viewgraph 9a, except that the coupling is a combination of stiffness

and gyroscopic control forms, rather than merely of stiffness control form.
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2. Moderate Coupling, 0;=0.1 ; g=0.1[t=0.9.]
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Viewgraph 9d (Continued)

3. Weak coupling is examined in this viewgraph. Again, the significant feature is a
reduction in level in Mg(y) accompanied by reduction in coupling strength. [cf..

Viewgraphs 9d.1 and 9d.2.]

4. A considerable increase in the modal overlap parameter (b) is examined in this
viewgraph; (b) is increased from (0.1) to (10). [cf. Viewgraph 9d.2.] Again, the significant
feature is an increasing erosion at the edges of the frequency range. [cf. Viewgraph 9d.2
and 12d.2.] In any case, one should be aware that the value of the induced loss factor Ng(y)
is largely significant only at and in the vicinity of y = 1, where the loss factor in the
impedance of the master oscillator has a dominant role to play in the response behavior of
this oscillator. It is noted that at this frequency range of y ~ 1, all values of Mg(y) are

without erosion for R = 27.

Note to Viewgraph 9.

Variations on the theme can be readily implemented. However, enough exhibits are

presented to acquaint the reader with some of the salient features that underlie all of them.
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Viewgraph 10

The summation in the expression for the induced loss factor Tg(y) presented in Viewgraph
2 may be evaluated, to first order of approximation, by replacing the summation by an
integration. The prescription for this replacement is stated in this viewgraph. Also stated is
the result of the evaluation of the integration under the condition imposed in Viewgraphs 7
and 8. The result is amazingly simple and constitutes the crux of the message in the thesis

presented herein.

It is clear that under the definition of (X? ), chosen in Viewgraph 3, the range, in the
normalized frequency variable (y) for which the result is valid, is stated in the viewgraph.

Also given is the condition that (1 + M) = (0L + Ol¢).

The factor (D) is largely determined by the mass ratio (Mg / M), where (M) is the total
mass in the satellite oscillators and (M) is the mass of the master oscillator. The term (C)
is quadratic in the coupling parameters (Ql¢), (M¢) and (g), with the first two acting
coherently. There is a term that is quadratic in a typical loss factor 1(y) of a satellite
oscillator. Thus, only when the coupling parameters are less than this loss factor; M(y) >
(0lc), (Mg), (g), may Ns(y) be significantly dependent on T)(y). However, and in
particular, if the satellite oscillators are sprung-masses this dependence vanishes. For some
other forms of couplings, this dependence may be significant. One should note, however,
that, in general, the inequality placed on 1(y), with respect to the coupling parameters,
requires (very) weak coupling strengths. To make this dependence significant one also
requires a special form of coupling, so that (O) is not unusually and simultaneously small;

e.g., for a non-stiffness control form of coupling, (O) is identically zero.
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Viewgraph 11

The induced loss factor Ns(y), as evaluated by replacing the summation by an integration,
is presented for two values of the modal overlap parameter (b); b= 0.1 and 2. The satellite
oscillators are largely sprung-masses. One immediately notices that, in the valid normalized
frequency range, the results for the two values of (b) are largely independent of (b). These
results are then compared with those presented in Viewgraph 9a.1. One may conclude that
the results of replacing the summation by an integration, and carrying out the integration to
a first order of approximation, is that mean-values only are issued in this evaluation; i.e., the
undulations that characterize Viewgraph 7, are suppressed by the mean-value theorem in
this viewgraph [2, 15]. In the second of the graphs direct comparison between Viewgraphs
9a.1 and 11.1 is conducted; i.e., in Viewgraph 11.2. It, thus, emerges that the undulations
exist only in one of the three curves, showing that the integration invariably yields results
that are commensurate with mean-values only and, as such, the results are largely
independent of the modal overlap parameter (b). In the normal frequency range of validity,

three of the curves largely coincide, not only in level, but in being undulation free.

Interestingly, in the result yielded by replacing the summation by integration there is no
sign of erosion in the first order of approximation at the edges of the frequency range. (This
is to be expected since the first order of approximation relies, a priori, on small values for
the model overlap parameter [2].) An erosion at these edges, however, is observed in the
exact evaluation of the summation. [cf.. Viewgraph 9d.] Again, one should be aware, in
any case, that the value of the induced loss factor T)s(y) is largely significant only at and in
the vicinity of y = 1, where the loss factor in the impedance of the master oscillator has a
dominant role to play in the response behavior of this oscillator. It is noted that at this
frequency range of y ~ 1, all values of Mg(y) are without erosion for R = 27. [cf.

Viewgraphs 9d.3 and 9d.4.]
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Viewgraph 12a

Stiffness Control Coupling

The graph in Viewgraph 11.2 is repeated in the first of this viewgraph; i.e., Viewgraph
12a.1. In this viewgraph the coupling is that of sprung-mass; i.e., Olc = 1 [0t = 0.0.] [cf.

Viewgraph 9a.1.]

As in viewgraphs under the designation of 9, several coupling forms and several coupling
strengths are depicted in viewgraphs under the designation of 12. Each viewgraph of this
series carries two different coupling strengths; the last viewgraph; i.e., Viewgraph 12d, of
this series carries three different strengths. [cf.Viewgraphs 9a, 9b, 9c and 9d.] The
commonalities and contrasts among these series yield a wealth of information regarding the

coupling forms and the coupling strengths in the behavior of this type of complex.
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Viewgraph 12b.

Gyroscopic Control Coupling

[cf. Viewgraph 9b.]
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Viewgraph 12¢

Mass Control Coupling

[cf. Viewgraphs 9c and 9d.3.]
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Viewgraph 12d

Stiffness and Gyroscopic Coupling

[cf. Viewgraph 9d.]
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Viewgraph 12d (Continued)

3. Weak coupling is examined in this viewgraph. Again, the significant feature is a
reduction in level in Mg(y) accompanied by reduction in coupling strength. [cf..

Viewgraphs 9d (Continued) and 12¢.2.]

4. A considerable increase in the modal overlap parameter (b) is examined in this

viewgraph; (b) is increased from (0.1) to (10). [cf. Viewgraph 9d (Continued) and 12¢.2.]

Again, the significant feature is an increasing erosion at the edges of the frequency range.

[cf. Viewgraph 9d (Continued) and 12¢.2.] In any case, one should be aware that the value
of the induced loss factor N(y) is largely significant only at and in the vicinity of y = 1,

where the loss factor in the impedance of the master oscillator has a dominant role to play in

the response behavior of this oscillator. It is noted that at this frequency range of y ~ 1, all

values of Mg(y) are without erosion for R = 27.

Note to Viewgraph 12.

Variations on the theme can be readily implemented. However, enough exhibits are

presented to acquaint the reader with some of the salient features that underlie all of them.
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